منابع مشابه
On the Complexity of a Matching Problem with Asymmetric Weights
We present complexity results regarding a matching-type problem related to structural controllability of dynamical systems modelled on graphs. Controllability of a dynamical system is the ability to choose certain inputs in order to drive the system from any given state to any desired state; a graph is said to be structurally controllable if it represents the structure of a controllable system....
متن کاملAsymmetric Elliptic Problems with Indefinite Weights
– We prove the existence of a first nontrivial eigenvalue for an asymmetric elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of the Fučik spectrum with weights for these operators. Another application concerns the study of nonresonance for the problems (1....
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملAn FPTAS for the Knapsack Problem with Parametric Weights
In this paper, we investigate the parametric weight knapsack problem, in which the item weights are affine functions of the formwi(λ) = ai + λ ·bi for i ∈ {1, . . . ,n} depending on a real-valued parameter λ. The aim is to provide a solution for all values of the parameter. It is well-known that any exact algorithm for the problem may need to output an exponential number of knapsack solutions. ...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2008
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2006.07.006